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Abstract

Dual-energy X-ray absorptiometry (DXA) is commonly used in the care of patients for diagnostic classification of
osteoporosis, low bone mass (osteopenia), or normal bone density; assessment of fracture risk; and monitoring changes
in bone density over time. The development of other technologies for the evaluation of skeletal health has been asso-
ciated with uncertainties regarding their applications in clinical practice. Quantitative ultrasound (QUS), a technology
for measuring properties of bone at peripheral skeletal sites, is more portable and less expensive than DXA, without the
use of ionizing radiation. The proliferation of QUS devices that are technologically diverse, measuring and reporting
variable bone parameters in different ways, examining different skeletal sites, and having differing levels of validating
data for association with DXA-measured bone density and fracture risk, has created many challenges in applying QUS
for use in clinical practice. The International Society for Clinical Densitometry (ISCD) 2007 Position Development
Conference (PDC) addressed clinical applications of QUS for fracture risk assessment, diagnosis of osteoporosis, treat-
ment initiation, monitoring of treatment, and quality assurance/quality control. The ISCD Official Positions on QUS
resulting from this PDC, the rationale for their establishment, and recommendations for further study are presented here.

Key Words: Diagnosis; fracture; guidelines; osteoporosis; QUS; recommendations; standards; treatment;
ultrasound.
Introduction

Osteoporosis is defined as a ‘‘disease characterized by low
bone mass and microarchitectural deterioration of bone tissue
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leading to enhanced bone fragility and a consequent increase
in fracture risk’’ (1). This definition does not provide explicit
diagnostic criteria that allow one to determine whether an in-
dividual is osteoporotic or not. As there is no available clini-
cal tool to assess bone microarchitecture or directly measure
bone fragility, measurement of bone mineral density (BMD)
assessed by dual-energy X-ray absorptiometry (DXA) is
used to diagnose osteoporosis (2). The World Health Organi-
zation (WHO) proposed a set of operational criteria to define
osteoporosis in postmenopausal Caucasian women (3). The
BMD value of an individual patient is expressed in terms of
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the number of standard deviations from the mean BMD of
a healthy young-adult reference population, commonly re-
ferred to as the T-score. Osteoporosis has been defined by
a T-score of �2.5 or less. The WHO diagnostic criteria are
applied to BMD measured at the spine, hip, or forearm (4);
however, the combination of socio-economical emphasis on
hip fractures and studies showing that BMD measured at
the proximal femur has the strongest association with hip
fracture has served to focus some clinical treatment guide-
lines on BMD measurements assessed by DXA at the hip
(femoral neck and/or total hip) (5).

The proliferation of bone densitometers using different
technologies for measuring different skeletal sites, along
with the absence of technology-specific guidelines, has cre-
ated great uncertainty in applying the results to managing
the care of individual patients in clinical practice. Amongst
the technologies, there is a growing interest in the use of
quantitative ultrasound (QUS). QUS is inexpensive, transport-
able, ionizing radiation-free, and proven to predict hip frac-
tures and all osteoporotic fractures in elderly women as
well as central DXA (6e8). For the last 15 yr, the body of ev-
idence highlighting the ability of QUS to predict fracture risk
is substantial, but its use in clinical practice is still not well
defined. Uncertainties that include long term stability, cross-
calibration, reference databases, precision issues, and techni-
cal diversity have limited its clinical application (9,10).

The role of the ISCD QUS Task Force was to review the med-
ical literature and propose a set of operational recommendations
for the clinical use of QUS. Five major topics were scrutinized:

� QUS and fracture risk assessment
� QUS and diagnosis of osteoporosis
� QUS and treatment initiation
� QUS and treatment monitoring
� QUS and quality assurance/quality control (QA/QC)

Note: Current recommendations can only be applied to pri-
mary osteoporosis (i.e., postmenopausal and osteoporosis as-
sociated with aging). Subjects with secondary osteoporosis or
metabolic bone disease (e.g. glucocorticoid-induced osteopo-
rosis, hyperparathyroidism, osteomalacia) should be managed
according to good medical practice.

Methodology

The methods used to develop, and grading system applied
to the ISCD Official Positions, are presented in the Executive
Summary that accompanies this paper. In brief, all Official
Positions were rated by the Expert Panel in four categories:
Quality of evidence (Good, Fair, Poor), where Good is
evidence that includes results from well-designed, well-
conducted studies in representative populations; Fair is evi-
dence sufficient to determine effects on outcomes, but the
strength of the evidence is limited by the number, quality,
or consistency of the individual studies; and Poor is evidence
that is insufficient to assess the effects on outcomes because
of limited number or power of studies, important flaws in
Journal of Clinical Densitometry: Assessment of Skeletal Health
their design or conduct, or gaps in the chain of evidence or
information.

Strength of the recommendation (A, B, or C), where A is
a strong recommendation supported by the evidence; B is
a recommendation supported by the evidence; and C is a rec-
ommendation supported primarily by expert opinion).

Applicability (worldwide 5 W or variable, according to
local requirements 5 L), and Necessity, where ‘‘Necessary’’
indicates that the indication or procedure is necessary due
to the health benefits outweighing the risk to such an extent
that it must be offered to all patients and the magnitude of
the expected benefit is not small.

Technological Diversity Amongst QUS Devices

ISCD Official Position

� For QUS, bone density measurements from different de-
vices cannot be directly compared.

Grade: Good-A-W-Necessary

Rationale
Ultrasounds are sound waves beyond the audible threshold,

typically defined as 20 kilo hertz (kHz). The physical and me-
chanical properties of bone progressively alter the shape, in-
tensity, and speed of the propagating wave. Bone tissue
may therefore be characterized in terms of ultrasound velocity
and attenuation: however, one must interpret these parameters
with care, since there are differences in their calculation with
different manufacturers and models. For example, velocity
may be bone velocity; heel velocity; time of flight velocity;
phase velocity; or amplitude dependent velocity. Similarly, ul-
trasound attenuation may use different algorithms which vary
as a function of the frequencies of the device as well as the
mathematical approach. For clarification and standardization
purposes amongst the different heel QUS devices, the Expert
Panel rated the following as appropriate terminology:

� Broadband Ultrasound Attenuation (BUA), in dB/MHz, is
the recommended attenuation parameter.
� Speed of Sound (SOS), in meters per second (m/s), is the

recommended velocity parameter.
� When available, a composite parameter combining BUA

and SOS, such as Stiffness Index (SI), or Quantitative
Ultrasound Index (QUI), may be clinically useful.

Detailed technical descriptions of the major QUS devices
have been published elsewhere (6,7,11). QUS instruments
from different manufacturers have significant differences,
particularly in their calibration methods; skeletal sites of
measurement and analysis; acquisition technique; analysis
software; and scanner designs.

Discussion

Technological diversities amongst QUS devices are not
a new concept in the medical field. Indeed, while DXA is the
gold standard for the diagnosis of osteoporosis, there are major
differences among manufacturers and models. For example,
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there may be single or multiple detectors. Dual X-ray may be
generated by a filter or switching. Each manufacturer has its
own BMD calculation algorithms (different bone edge detec-
tion, intra marrow fat correction, etc. As a result, absolute value
of BMD, the common parameter for all DXA devices, cannot be
compared with different manufacturers and models.

It is usual to categorize DXA into fan, pencil or cone beam
X-ray devices. Similarly, taking into account the technical
diversities, QUS devices may be classified into three groups
according to the type of ultrasound transmission:

� Trabecular transverse transmission. The ultrasound waves
travel through trabecular bone. Currently, this category of
devices uses water-based or direct-contact systems at the
heel. In the latter case, the coupling medium is oil-based
gel and will be referred to as a dry system. The devices
use focused or unfocussed transducers to acquire a set
of parameters that may also include the formation of an
ultrasound parametric image (6,7).
� Cortical transverse transmission. The ultrasound waves

travel through cortical bone. Currently, only phalanges
contact devices fall into this category (11).
� Cortical axial transmission. In this category of devices,

the ultrasound waves are travelling along the bone. Ultra-
sound of the phalanges, radius, and tibia is currently
under investigation. with such devices (11).

The degree of technical diversity of QUS devices and pa-
rameters is much larger than what is commonly found in
DXA. This increases the difficulties in comparing measure-
ments with different QUS devices and may lead to misinter-
pretation of results. For example, precision may appear to
be better for one device or parameter compared to another,
when in fact the comparison is not valid. The biological var-
iation and the mean of the considered parameter must be
taken into account. One method of doing this is the use of
standardized precision, which enables the comparison of dif-
ferent devices and parameters (12,13).

To appreciate the complexity of such technical diversity
amongst QUS devices and manufacturers, we have tabulated
the following properties when available (Table1):

� The skeletal site assessed.
� The coupling agent (water or gel).
� The use of an image or not.
� The short-term precision (percentage coefficient of varia-

tion [CV%]), with the range of the value and the number
of studies from which the values have been derived (in pa-
renthesis). When no study showing CV% was found, then
precision from the manufacturer was given with an ‘‘m’’
in parenthesis (12).
� The standardized coefficient of variation (SCV%), using

the following formula: root mean squared coefficient of
variation (RMSCV) divided by (four times the standard
deviations of the population divided by the mean of the
population) (13).
� The peak QUS values for Caucasian women extracted

from multiple studies.
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� The correlation with the corresponding parameters of the
GE Lunar Achilles, which has been arbitrarily set as our
‘‘reference device’’, due to its use for most of the valida-
tion studies.

It becomes evident from Table 1, that direct comparison of
the QUS devices cannot be performed without significant
bias, i.e., results from one QUS device cannot be extrapolated
to another one that is technologically different.

Additional Questions for Future Research

� For a given skeletal site, would there be additional value
for standardization of the Region of Interest (ROI) as it is
now for DXA?
� Does the QUS image improve overall clinical perfor-

mance?
� Is there a need for new QUS parameters, e.g. Broadband

Ultrasound Backscattered (BUB)?
� How can precision and long term stability of current QUS

devices be improved?

Can QUS be Used for Fracture Risk
Assessment?

ISCD Official Positions

� The only validated skeletal site for the clinical use of
QUS in osteoporosis management is the heel.
Grade: Good-A-W-Necessary
� Validated heel QUS devices predict fragility fracture in

postmenopausal women (hip, vertebral and global frac-
ture risk) and men over the age of 65 (hip and all non-ver-
tebral fractures), independently of central DXA BMD.
Grade: Good-A-W-Necessary
� Discordant results between heel QUS and central DXA

are not infrequent and are not necessarily an indication
of methodological error.
Grade: Good-A-W-Necessary
� For QUS, different devices should be independently vali-

dated for fracture risk prediction by prospective trials or
by demonstration of equivalence to a clinically validated
device.
Grade: Good-B-W-Necessary

Rationale
The clinical evidence that QUS of the heel by transverse

transmission devices predicts fracture is stronger than for
other QUS devices at other skeletal sites, e.g. cortical trans-
verse transmission of the phalanges, or cortical axial trans-
mission of the radius or phalange. Similarly, there are more
data concerning hip and any fractures prediction compared
to spine fractures. Overall, heel QUS can discriminate those
with osteoporotic fractures (hip, spine, any osteoporotic frac-
ture) from age-matched controls without osteoporotic fracture
(13e81). It is difficult to compare the performance of all the
assessed devices due to differences in study design that in-
clude variation in inclusion/exclusion criteria and ethnicity
Volume 11, 2008



SCV
mean:
range

R*

(# studies) Comments

.2: 2.8e7.0 1

.8: 2.4e11.7 1

.6: 0.8e4.1 1

.3: 2.9e5.7 0.86 (3)

.4: 2.9e5.4 0.77 (3)

.2: 2.0e4.3 0.87 (3)

.9: 2.6e3.9 0.93 (2)

.3: 1.0e3.1 0.87 (2)
e

e 0.91 (1)
.1: 1.2e6.3 0.87 (1)

.4: 2.9e3.9

.1: 3.6e7.1

.6: 2.3e8.8

.2: 3.2e7.8 0.89 (1)

.3: 3.1e6.1 0.77 (1)
5.7 0.82 (1)

Achilles like

Ubis like

Achilles like

.7: 2.3e14.2 0.34 (2)

.9: 0.3e1.4 e

.2: 1.5e7.4 0.10 (2)

.1: 1.0e7.7 0.10 (2)
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Table 1
Summary of Technical Specifications of Currently Available QUS Devices

Manufacturer Model
Skeletal

site Coupling Imaging Parameter

PBM
Caucasian

women

Mean QUS,
PM Caucasian

women

CVmean:
range

(# studies)

GEdLunar Achilles þ Heel Water No SOS 1567� 28.2 1521� 27 0.3: 0.2e0.5 (22) 4
Achilles Exp. Heel Water/Gel No BUA 116� 9.4 106� 10 2.2: 0.9e4.4 (22) 5
Achilles Ins. Heel Water/Gel Yes Stiffness 96� 14.5 76.9� 14 1.9: 0.6e3.0 (24) 2

Hologic Sahara Heel Gel No SOS 1568� 27.6 1533� 27 0.3: 0.2e0.4 (6) 4
BUA 75� 14.3 64.2� 15.0 4.1: 2.7e5.0 (6) 4
QUI 103� 16.2 82.2� 16.7 2.6: 1.6e3.5 (4) 3

DMS Ubis 3000/
5000

Heel Water Yes SOS 1521� 25.2 1499� 29 0.3: 0.2e0.3 (3) 3
BUA 68� 9.6 59.2� 14 2.2: 0.9e2.9 (3) 2
STI e

Norland (McCue) Cuba
Clinical

Heel Gel No VOS e e 0.6: 0.3e1.0 (4)
BUA 89� 16.6 72.1� 15 3.4: 1.0e5.2 (6) 4

Quidel Inc. QUS-2 Heel Gel No BUA 89� 13.6 76.7� 17 3.0: 2.6e3.4 (2) 3

Meditech. DTU-One Heel Water Yes SOS 1553� 9.3 1547� 11 0.2: 0.1e0.2 (4) 7
BUA 50� 6.4 49.5� 7 2.6: 1.3e5.0 (5) 4

Aloka AOS-100 Heel Gel No SOS 1530� 24 0.2: 0.2e0.3 (1) 3
IT 0.98� 0.08 1.4: 1.0e2.0 (1) 4

OSI 2.27� 0.25 2.5: (1)

Medilink Osteospace Heel Gel No SOS 0.2 (m)
BUA 1.0 (m)
STI e

Pecassus Heel Gel No

Ishikawa
Seisakusho Ltd

Benus Heel Gel No SOS 1.0 (m)

ELK Co. CM-100/200 Heel Gel No SOS 1.0 (m)

Osteosys Co. Sonost 2000 Heel Water/Gel No SOS
Sonost 3000 Gel BUA

BQI

BMtech21 Co. OsteoImager
Plus

Heel Water Yes SOS
BUA

OI
Osteo Pro Heel Oil No SOS 0.2 (m)

BUA 0.2 (m)
OI 0.7 (m)

IGEA DBM Sonic
1200/BP

Phalanges Gel No AD-SOS 2096� 72 1935� 85 1.0: 0.4e2.5 (9) 5
UBPI 0.37� 0.19 1.9: 0.6e2.9 (3) 0

BeamMed
(Sunlight)

Omnisense Radius
phalanges

Gel No SOS r 4133� 102 4034� 136 0.7: 0.2e1.0 (4) 5
SOS p 4021� 176 3879� 190 0.8: 0.2e1.5 (4) 4

*Correlation to Achilles for matching parameters.
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of subjects. To overcome these confounding factors, it would
be necessary to include all the devices in the same study and
have all the patients measured on all the machines. Few stud-
ies have performed such a comparison. A total of 11 relevant
studies are summarized in Table 2.

The power of heel QUS to predict fracture observed in
cross-sectional studies has been confirmed by many prospec-
tive studies, as shown in Table 3. The hazard ratio (HR, Cox
regression), or relative risk (RR, logistic regression) per stan-
dard deviation decrease (HR/SD or RR/SD) for all ultrasound
parameters is approximately 2.0 for the hip and spine
(82e92), and 1.5 for all fractures (Table 2) (86,87,91e103).
This is similar with results generally found using BMD as-
sessed by DXA (104,105). Moreover, the relationship found
between QUS parameters and incident fractures was generally
independent of the BMD assessed by DXA, whatever the skel-
etal site (site-matched or not) (84,85,92,99,102). Discordant
results between heel QUS and central DXA, which are not in-
frequent, are not necessarily an indication of methodological
error but rather due to the independence between the two tech-
niques. Heel QUS was also predictive of hip and non-vertebral
fracture risk in men (86,87,92,100), and in Asian subjects
(87,95). Only one study using UBA 575 did not show positive
results in terms of hip fracture prediction (106).

Since the level of evidence varies according to the manu-
facturer and the model of QUS device, results cannot be ex-
trapolated from one device to another one that is
technologically different. The best way to verify the ability
of a technique to predict osteoporotic fracture would be to
conduct prospective studies. However, the cost and logistics
of such studies may be prohibitive for small companies. It
is therefore helpful to use an approach called ‘‘equivalence
studies.’’ This approach must be used cautiously, as cross-sec-
tional studies tend to systematically overestimate the odds ra-
tio (OR) (compare Tables 2 and 3). According to this concept,
if a prospective study is not available for a given device, an
acceptable alternative with a compromised level of confi-
dence is a population-based cross-sectional study with the fol-
lowing three performance characteristics (adapted from the
National Osteoporosis Society (107)):
� High level of correlation (coefficient of correlation more

than 0.8) with a well-established device (e.g. GE Lunar
Achilles device)
� Good standardized precision (SCV within the 95% CI of

the GE Lunar Achilles device for example).
� At least two independent cross-sectional studies per type

of fracture (hip, vertebral and all fractures) showing sig-
nificant discrimination between fractured and not frac-
tured age matched controls.
B Number of subjects (N) should be at least 70 per

groups
B Claims are fracture dependent.
B One of the already established devices should be in-

cluded in such studies for comparison.
B No significance should be found when comparing the

discriminative power of the devices using Areas Under
the Receiver Operating Characteristic Curve (ROC).
Journal of Clinical Densitometry: Assessment of Skeletal Health
The following Table 4 summarizes the ability of QUS
devices for males and females to be considered as validated
devices for fracture risk prediction.

Discussion

What has been demonstrated for heel-based devices does
not apply to non-heel devices (cortical transverse and axial
transmission devices), which in general show lower perfor-
mance characteristics. Prospective data of the Osteoporosis
and Ultrasound Study (OPUS) were presented during the
2007 meeting of the American Society for Bone and Mineral
Research (ASBMR) (108). Five QUS devices (four of the
heel, one of the phalanges) were compared with DXA for
the prediction of hip or vertebral fracture risk. The four
heel QUS (Achillesþ, DTU-one, QUS-2 and UBIS 5000)
predicted hip and vertebral fractures at least as well as central
DXA. The phalanges QUS DBM sonic failed to predict hip
and vertebral fractures as already shown by others (90,109).
Only one prospective study assessed the ability of cortical
axial transmission QUS to predict fracture in a population
of elderly women living in nursing homes (110). Whereas
incident hip and non vertebral fracture risk was related
to Achillesþ SI (HR 1.3 (1.1e1.4), respectively 1.1
(1.02e1.3)), Omnisense SOS phalange or radius was not pre-
dictive of fracture.

Figure 1 shows the results of 10 prospective studies that as-
sessed the predictive power of heel QUS for hip, vertebral or
non spine/clinical fractures in comparison with hip DXA
(femoral neck or total hip BMD (HR/SD or RR/SD with
95% confidence intervals). The results of the OPUS study
are included in this figure.

From a large body of evidence, validated heel QUS de-
vices predict fragility fracture in postmenopausal women
(hip, vertebral, and global fracture risk) and men over the
age of 65 (hip and all non-vertebral fractures) independently,
and as well as central DXA BMD.

Additional Questions for Future Research

� Would additional prospective studies for non-heel devices
modify the current recommendations?
� How is it possible to reinforce the strength of evidence for

the clinical use of QUS in non-Caucasian women and
men?
� Considering the technical difficulties, what would be the

additional value of measuring the hip by QUS?

Can QUS be Used to Diagnose Osteoporosis?

ISCD Official Position

� The WHO diagnostic classification cannot be applied to
T-scores from measurements other than DXA at the femur
neck, total femur, lumbar spine or one-third (33%) radius
because those T-scores are not equivalent to T-scores de-
rived by DXA.

Grade: Good-A-W-Necessary
Volume 11, 2008
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Table 2
Summary of the Major Cross-Sectional Studies Comparing Different QUS Devices

Reference Mean age Fractures
Fractured
population

Compared
population Device OR (95% CI)

Njeh et al. (13) 75 Hip 35 35 Achillesþ SI 2.8 (1.5e5.2)
Sahara QUI 2.4 (1.3e4.3)
AOS 100 OSI 2.4 (1.3e4.5)
Cuba BUA 2.5 (1.2e5.1)
UBIS 3000 BUA 3.4 (1.6e7.1)
UBA 575þ 2.5 (1.4e4.6)
FN BMD 2.6 (1.3e5.1)

Eckmann et al. (25) 75 Hip 87 195 Achilles SI 3.1 (2.2e4.5)
DBM 1200 SOS 1.0 (0.7e1.3)
FN BMD 3.6 (2.4e5.5)

Eckmann et al. (26) (men) 75 Hip 31 68 Achilles SI 2.2 (1.2e3.9)
DBM 1200 SOS 2.0 (1.2e3.3)
FN BMD 4.8 (2.3e9.9)

Hans et al. (45,46) 77 Hip 50 46 Achillesþ SI 3.1 (1.6e6.2)
Sahara QUI 2.3 (1.2e4.4)
UBIS 5000 BUA 2.3 (1.2e4.3)

38 38 Omnisens SOS rad 2.7 (1.4e5.3)

Krieg et al. (55) 75 Hip 86 3866 Achillesþ SI 2.7 (2.1e3.5)
Sahara QUI 2.4 (1.8e3.2)
DBM 1200 ADSOS 1.4 (1.1e1.7)

Frost et al. (29) 63 Vertebral 83 164 UBA 575þ BUA 3.2 (2.1e4.7)
DTU-one BUA 3.3 (2.3e4.6)
FN BMD 2.9 (1.9e4.4)

Gl€uer et al. (34) 55e79 Vertebral 379 1506 Achilles SI 1.5 (1.3e1.7)
1943 DTU-one BUA 1.3 (1.2e1.4)
1173 QUS-2 BUA 1.4 (1.2e1.6)
1738 UBIS 5000 BUA 1.4 (1.2e1.6)
1908 DBM BP SOS 1.2 (1.1e1.4)
1961 Spine sBMD 1.6 (1.4e1.8)
1995 TH sBMD 1.6 (1.4e1.8)

Clowes et al. (19) 68 Vertebral 73 501 Achilles BUA 3.1 (2.2e4.3)
DTU-one BUA 3.2 (2.4e4.3)
QUS-2 BUA 3.7 (2.6e5.2)
UBIS 5000 BUA 4.0 (2.9e5.7)
Omnisens SOS phal 1.3 (0.99e1.8)
Omnisens SOS rad 1.5 (1.2e2.0)
DBM BP SOS 1.6 (1.2e2.3)
TH BMD 4.3 (3.0e6.2)

Hartl et al. (47) 70 Vertebral� 2 fractures 19 396 Achillesþ SI 3.0 (1.6e5.6)
Sahara QUI 3.8 (1.8e8.2)
DBM PB SOS 2.1 (1.3e3.4)
FN BMD 1.9 (1.2e3.9)
LS BMD 2.1 (1.2e3.9)

(Continued )
Journal of Clinical Densitometry: Assessment of Skeletal Health Volume 11, 2008
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Table 2 (Continued)

Reference Mean age Fractures
Fractured
population

Compared
population Device OR (95% CI)

Frost et al. (30) 62 Osteoporotic 154 221 Sahara eBMD 3.2 (2.3e4.3)
DTU-one BUA 2.5 (1.9e3.3)
FN BMD 2.2 (1.7e2.9)

Gonnelli et al.
(38) (men)

60 Osteoporotic 133 268 Achillesþ SI 3.2 (2.3e4.5)
DBM BP SOS 2.0 (1.3e2.8)
FN BMD 3.2 (2.3e4.4)
Rationale
The WHO classification of BMD was established using cen-

tral DXA technologies at specified skeletal sites with a female
postmenopausal Caucasian reference database (3). It is not pos-
sible to apply the WHO criteria to other technologies and other
skeletal sites. The WHO T-score range of�2.5 or less identifies
approximately 30% of postmenopausal women as having oste-
oporosis, which also approximates the average lifetime risk of
osteoporotic fractures (clinical spine fracture, hip and forearm)
(1e3). The T-score diagnostic threshold of �2.5 cannot be ap-
plied to QUS devices without the risk of having discrepancies in
the number of women diagnosed with osteoporosis. For exam-
ple, if the prevalence of osteoporosis is defined as the population
below a T-score threshold of �2.5, then several studies have
shown that the prevalence varies widely (over 10-fold) when
the same T-score is applied to different QUS devices and skel-
etal sites (81,112e116). To illustrate this point, at 60 yr old, the
prevalence of women below the T-score threshold of �2.5 is:
4% for Sahara QUI; 12% for Omnisense radius SOS; 16% for
Achilles SI; 24% for Omnisense phalanges SOS; and 50% for
DBM sonic ADSOS. Using DXA, the prevalence of women be-
low the T-score �2.5 at the same age is: 12% for lumbar spine
BMD; 14% for femoral neck BMD; and 7% for total hip BMD
(see also Fig. 2). Unfortunately, it is not unusual to see physi-
cians incorrectly apply the WHO criteria for diagnostic classi-
fication to QUS measurements for patients in clinical practice.

Discussion

Osteoporosis cannot be diagnosed by QUS according to
the WHO classification. However, one could define specific
thresholds to identify patients at high or low risk of having
osteoporosis. This approach has been proposed by the UK
National Osteoporosis Society for use with pDXA tech-
niques (117,118) and others (119,120). They have defined
upper and lower values for pDXA parameters with 90%
sensitivity (upper threshold) and 90% specificity (lower
threshold) for identifying patients with central DXA T-score
of �2.5 or lower at the hip or spine. At or above the
threshold of 90% sensitivity, the likelihood of having oste-
oporosis was very low, with only 10% of subjects being
rated as false-negative. On the other hand, a specificity of
90% could be used to define subjects as having high likeli-
hood of osteoporosis. This leads to a low rate (10%) of
false-positive subjects.
Journal of Clinical Densitometry: Assessment of Skeletal Health
It could be appropriate to apply this concept to QUS,
given the high correlation between QUS parameters and
skeletal site-matched bone mass assessed by DXA/pDXA.
To illustrate such an approach with QUS, we have calcu-
lated the upper and lower thresholds for Sahara and the
Achilles devices from the data published by Hans et al.
(119,120). The upper thresholds for the QUI or Stiffness In-
dex are 83 units and 78% for the Sahara and the Achilles
respectively and the corresponding lower thresholds are 59
units and 57%. To estimate the performance of these thresh-
olds, we applied the Achilles calculated thresholds in the
5954 women, aged 75 yr and older, included in the Epidemi-
ology of Osteoporosis (EPIDOS) study who had an assess-
ment of their femoral neck by DXA, and of their heel by
Achilles QUS. In this example, the percentage of false pos-
itive was of 11%, whereas the percentage of false negative
was of 13%. The outcomes are displayed in Figures 2 and 3.

For women with heel QUS parameters that lie between up-
per and lower thresholds, BMD measurement assessed by
central DXA could be recommended. In our example, 56%
of the women lie between the two thresholds. Among this
group about half of them will be classified as osteoporotic
at their femoral neck according to the WHO criteria. The
overall prevalence of osteoporosis combining heel QUS and
hip DXA was in the order of 55%, which corresponds to
the prevalence of osteoporosis in our population using hip
DXA alone (��2.5 T-score).

Discordant classification in the results between heel QUS
and central DXA due to the partial independence between
the two techniques should not undermine any of these tech-
niques. Indeed, given the similar predictive power of DXA
and QUS, a low result with one of the two techniques corre-
sponds to a high risk of fracture.

Additional Question for Future Research

� Is there an added value to combining DXA and QUS mea-
surements in the management of osteoporosis?

Can QUS be Used to Initiate Treatment?

ISCD Official Positions

� Central DXA measurements at the spine and femur are
the preferred method for making therapeutic decisions
Volume 11, 2008
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5.1) 1 yr, treated
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and should be used if possible. However, if central DXA
cannot be done, pharmacologic treatment can be initiated
if the fracture probability, as assessed by heel QUS using
device specific thresholds and in conjunction with clinical
risk factors, is sufficiently high.
Grade: Fair-C-W-Necessary
� Heel QUS in conjunction with clinical risk factors can be

used to identify a population at very low fracture proba-
bility in which no further diagnostic evaluation may be
necessary.
Grade: Good-B-W-Necessary

Rationale
Most of current recommendations for treatment initiation

are based on central DXA and are summarized in Table 5
(121e127):

In all current recommendations, the most common basis
for treatment initiation is the presence of low BMD. However
the National Osteoporosis Foundation also includes as an al-
ternative to low BMD, the presence of low energy vertebral or
hip fractures (121). This approach to treatment initiation has
been reinforced by the newly published study on the efficacy
of zoledronic acid, demonstrating a significant reduction of
vertebral and all clinical osteoporotic fractures in patients
with acute hip fracture independent of the level of BMD
values (129).

Many studies have demonstrated that heel trabecular trans-
mission QUS parameters are strongly correlated with BMD,
with a correlation coefficient of about 0.9 for skeletal site-
matched regions-of-interest (10,130e132). This suggests
that appropriate thresholds for QUS could be potentially de-
fined to match the BMD treatment initiation thresholds with
a certain degree of confidence. However, available therapeutic
intervention thresholds vary due to either the presence or ab-
sence of clinical risk factors (CRFs) for fracture or different
CRFs being used as a function of the professional group
that are suggesting the recommendations. It is generally ac-
cepted that the BMD threshold for initiating treatment is
higher when CRFs are present.

It is well-established that the basic parameters associated
with QUS measurement of bone, namely the SOS and BUA,
are associated with overall bone strength. Bone strength is re-
lated to bone density, bone architecture (macro and micro)
bone turnover, as well as the degree of bone mineralization
(9,10,131,133e139). It is likely that these factors work together
in an integrated way to maintain the overall quality and strength
of bone to perform its function while preserving its integrity and
its resistance to fractures (9,10,131,133e139). Heel trabecular
transverse transmission parameters correlate with bone
strength up to 70e80% (136,140e147).

A key clinical question is whether individuals identified by
QUS as ‘‘high-risk’’ for fracture will benefit significantly by
treatment with antiresorptive agents or other specific medica-
tions against osteoporosis. Currently, there are no randomized
clinical trials showing reduction of fracture risk in patients
selected for treatment according to QUS measurement. But
we have to face a certain paradox: treatment with approved
Volume 11, 2008
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Table 4
QUS and Fracture Prediction by Devices and by Types of Fractures

Manufacturer Model
Number of

prospective studies Level of confidence

Fracture risk assessment

Female Male

H/V/ALL H/V/ALL

GEdLunar Achilles 11 Very high yes/yes/yes yes/ukn/yes
Hologic Sahara 5 High yes/yes/yes yes/ukn/yes
IGEA DBM Sonic BP 5 High no/no/yes ukn/ukn/ukn
Norland (McCue) Cuba Clinical 3 Medium yes/ukn/yes yes/ukn/yes
DMS Ubis 3000/5000 1 Low yes/yes/yes ukn/ukn/ukn
Quidel Inc. QUS-2 1 Low yes/yes/yes ukn/ukn/ukn
Meditech. DTU-One 1 Low yes/yes/yes ukn/ukn/ukn
Medilink Osteospace 0 absent ukn/ukn/ukn ukn/ukn/ukn
Aloka AOS-100 0 absent ukn/ukn/ukn ukn/ukn/ukn
Ishikawa Seisakusho Ltd Benus 0 absent ukn/ukn/ukn ukn/ukn/ukn
ELK Co. CM-100/200 0 absent ukn/ukn/ukn ukn/ukn/ukn
Osteosys Co. Sonost 2000/3000 0 absent ukn/ukn/ukn ukn/ukn/ukn
BMtech21 Co. OsteoImager Plus 0 absent ukn/ukn/ukn ukn/ukn/ukn

Osteo Pro 0 absent ukn/ukn/ukn ukn/ukn/ukn
BeamMed (Sunlight) Omnisense 0 absent ukn/ukn/ukn ukn/ukn/ukn

Abbr: H, hip fractures; V, vertebral fractures; ALL, non vertebral fractures/clinical fractures; Ukn, unknown statusdno available study pub-
lished in peer reviewed journal.
antiresorptive drugs is associated with a reduction in fracture
risk that is disproportionately greater than the increase in
BMD, as determined by DXA. In other words, osteoporosis
medications improve bone strength in ways that are not
entirely dependent on BMD. Given the strong and positive
Journal of Clinical Densitometry: Assessment of Skeletal Health
relationship between trabecular transmission QUS parameters
and bone strength, it is unlikely that bone strength will
increase under treatment with decreasing QUS values.

Nevertheless, it is difficult to define a ‘‘high-risk’’ thresh-
old that will identify a patient who is likely to benefit from
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Fig. 1. Prospective studies comparing QUS with DXA for hip, vertebral and all osteoporotic fractures. Hazard ratios (HR) by
Cox regression or relative risk (RR) by logistic regression per decrease of one SD of the different parameters.
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osteoporotic medication with a sufficient level of confidence.
This threshold would have to be device-specific based on
DXA equivalence to the �2.5 T-score of the hip, and similar
to the diagnostic lower threshold, as previously described.

Discussion

We recommend requiring the presence of major CRFs in
conjunction with low QUS parameters to make treatment de-
cisions. From meta-analyses and reviews published by Kanis
(148) and Durosier (105) also involving QUS studies, we
have identified the following CRFs to be used in the decision
model: age over 75 yr (149,150); low BMI (!20 kg/m2)
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Fig. 2. Example of mean T-score as a function of age for
several technologically different QUS and DXA devices
(data from the manufacturer reference database).
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(149,151,152); previous fracture after age 50 yr (149,152,153);
maternal history of hip fracture (154); current smoking (155);
diabetes mellitus (152); ever use of glucocorticoids
(152,156); fall within the last 12 mo (152,157); use of arms
to stand up from a chair (‘‘missed chair test’’) (152,157,158).

The difficulty of applying CRFs to individual patients is
the absence of quantitative values. Indeed, these parameters
are usually categorical and the weight of each of them may
vary. To overcome these difficulties, a task force of the
WHO, lead by Kanis, is developing a 10-yr probability of os-
teoporotic fracture model combining femoral neck BMD and
CRFs. Similarly, the calculation of an osteoporotic fracture
probability taking into account the gradient of risk of QUS
parameters and CRFs could replace a device-specific T-score.
High- and low- risk probabilities then would help to deter-
mine the strategy for a given patient. This later model has
been developed by Hans et al. based on more than 12000
Caucasian women (159). It combines five CRFs in addition
to age and Body Mass Index [(1) diabetes; (2) history of
fracture; (3) history of a fall over the preceding 12 mo; (4)
use arms to stand up from a chair; and (5) current cigarette
smoking] and the heel stiffness index, as measured by QUS.
Using this model, Hans et al. demonstrated that the probability
of a fragility fracture for a given woman increases with the
number of CRFs, and with a decreasing stiffness index (Fig. 4).

To convert this model into a useful clinical tool, risk
thresholds must be defined based upon these probabilities.
If we are using the same approach that was previously defined
for the Achilles Stiffness Index (90% sensitivity and specific-
ity), one could derive low- and high-risk probability of frac-
ture thresholds (Fig. 5).

To display all the possible combinations between CRF,
QUS and BMI, special software must be developed.
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the lower threshold are at high risk (11% of false positive). DXA could be avoided in 44% of the population. The overall prev-
alence of osteoporosis combining heel QUS and hip DXA, or using hip DXA alone was the same (55%).
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Table 5
Recommendations for Specific Anti-Fracture Therapy Initiation (2003 and after) OP TTT 5 Treatment of osteoporosis

OP TTT initiation, PM women
OP TTT initiation,

Men 60þ Comments

NOF 2003
(USA) (121)
&

Prior vertebral (VF) or hip fracture (HF) Major clinical risk factors (CRFs):
low trauma peripheral fracture
fragility fracture in a first
degree relative weight !127
lbs current smoking
corticosteroids O 3 mo

T-score !�2.0 with no risk factors
T-score !�1.5 with� 1 risk factors

ACOG 2003
(USA) (122)

AACE 2003
(USA) (123)

low-trauma fractures
T-scores��2.5 with no risk factors
T-score !�1.5 with� 1 risk factors
Women in whom non pharmacologic

preventive measures are ineffective (bone
loss continues or low trauma fractures occur)

SIGN 2003
(UK) (124)

�2 VF T-score !�2.5� FF
T-score !�2.5� FF

NAMS 2006
(USA) (125)

Low trauma VF
T-score��2.5
T-score��2 with RF

DVO 2006
(Germany)
(126)

VF & T-score !�2.0 VF & T-score !�2.0 If clinical risk factor: þ1
T-score

HF in a parent
low trauma peripheral
fracture
current smoking

Multiple falls, immobility

10YR for VFþHF O 30%
& T-score !�2.0

10YR for VF þ HF O
30% & T-score !�2.0

50e60: T-score �4.0 60e70: T-score� 4.0
60e65: T-score �3.5 70e75: T-score� 3.5
65e70: T-score �3.0 75e80: T-score� 3.0
70e75: T-score �2.5 80e85: T-score� 2.5
O75: T-score �2.0 O85: T-score� 2.0

AFSSAPS 2006
(France) (128)

T-score��2.5 & FF Clinical risk factors:
corticosteroids
family hip fracture
low BMI
current smoking
increased risk of falls

T-score !�1.0 & VF or HF
T-score !�1.0 & other FF & CRFs
T-score��2.5 & 60þ yr
(T-score !�1.0 & major CRFs)

OP Ca 2006
(Canada)
(127)

50: LR O�2.3, MR: �2.3/�3.9, HR: !-3.9 If clinical risk factor: þ1
category

FF after 40 yr
Corticosteroids

55: LR O�1.9, MR: �1.9/�3.4, HR: !�3.4
60: LR O�1.4, MR: �1.4/�3.0, HR: !�3.0
65: LR O�1.0, MR: �1.0/�2.6, HR: !�2.6
70: LR O�0.8, MR: �0.8/�2.2, HR: !�2.2
75: LR O�0.7, MR: �0.7/�2.1, HR: !�2.1
80: LR O�0.6, MR: �0.6/�2.0, HR: !�2.0
85: LR O�0.7, MR: �0.7/�2.2, HR: !�2.2

Abbr: PM, postmenopausal; VF, vertebral fracture; HF, hip fracture; FF, fragility fracture; 10YR, 10 yr risk; LR (!10%), low 10YR (hip,
spine, forearm, proximal humerus); MR (10e20%), moderate 10YR; HR (O20%), high 10YR.
While the high correlation between QUS and BMD in tra-
becular bone has been confirmed (simulation studies (160), in
vitro studies (161)) and is relatively well understood, the sit-
uation with cortical bone is more complex. Many properties
Journal of Clinical Densitometry: Assessment of Skeletal Health
influence these measurements, including cortical thickness,
mineralization, porosity, and lamellar structure, and it is not
clear how much these properties contribute to bone strength
(162e165). There are interesting developments which might
Volume 11, 2008
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lead to a separate assessment of factors related to bone
strength, such as cortical thickness and material properties;
however, this is not yet implemented in the two commercial
devices (IGEA DBM Sonic and Beamed Omnisense devices).
Given the minor performance of these non-heel methods,
poor correlation to heel QUS or central BMD, and/or lack
of data, we cannot currently recommend the use of these
two devices for treatment initiation.

Example of a Case-Finding Strategy if DXA
is not Available

Additional Questions for Future Research

� What would be the impact of the development of the 10-
or 5-yr probability of fracture model taking into account
QUS parameters and CRFs in the management of osteo-
porosis?
� How could optimal thresholds (high and low probability

of fracture), taking into account cost-effectiveness consid-
erations, be defined?
� How can randomized clinical trials be designed using low

QUS values (or high probability of fracture) as inclusion
criteria, in order to assess the possibility of using QUS/
CRFs to make decisions on treatment initiation?
� How can QUS be used to optimize a case-finding strat-

egy?

Can QUS be Used to Monitor Treatment?

ISCD Official Position

� QUS cannot be used to monitor the skeletal effects of
treatments for osteoporosis.

Good-A-W-Necessary
Journal of Clinical Densitometry: Assessment of Skeletal Health
Rationale
At present, there are few studies evaluating the effects of

pharmacological treatments on QUS parameters. Large ran-
domized double-blind placebo-controlled studies are lacking.
A summary of all studies involving treatment monitoring can
be found in the Table 6, with no clear evidence that QUS is
clinically useful in monitoring treatment (166e182). Al-
though QUS parameters at the heel and particularly the SI
shows similar patterns with respect to axial BMD in osteopo-
rosis patients treated with antiresorptive drugs in two studies,
one in postmenopausal osteoporotic women (168), the other
in osteoporotic men (167), the evidence is not strong enough
to generalize the use of heel QUS for monitoring. Indeed, the
number of subjects included in these studies remained too low
and the designs are not based on double blind placebo control
studies.

QUS parameters at the phalanges seem to be less sensitive
than those at the heel in monitoring the effects of anti resorp-
tive agents. This finding may be attributed to the low percent-
age of trabecular bone at this skeletal site, as well as it being
a non-weight-bearing bone. Some of the data suggest that
QUS parameters may have clinical utility in monitoring treat-
ment with anabolic agents, but this needs confirmation by ad-
ditional studies.

Discussion

The ability of QUS to monitor bone changes depends on
the precision of QUS parameters and the magnitude of the re-
sponse. From Table 1, we can see that in general, QUS is pre-
cise in the short-term, but the precision varies widely among
devices and parameters being measured. In addition, when
considering the Minimal Time Interval (MTI), it is clear
that DXA offers greater clinical utility in terms of time to as-
sess a significant change, compared to QUS.

For unclear reasons, current osteoporosis therapies are not
always associated with measurable changes at peripheral
skeletal sites depending on the region of interest and the de-
vice used. Whether this is a precision problem or simply a rel-
ative lack of treatment response at the peripheral site (or
a combination of the two) remains unknown. In addition,
the limited number and current design of studies could con-
tribute to such unclear outcomes.

Additional Questions for Future Research

� Could large double-blind placebo-controlled studies for
the treatment of osteoporosis use QUS for monitoring?
� Could QUS long-term precision be improved?
� Are there additional skeletal sites besides the heel that

may be more responsive to treatment?

QUS Reporting

ISCD Official Positions

� For QUS, the report should combine the following stan-
dard elements:
B Date of test
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Fig. 4. Ten-yr probability of hip fracture for a given BMI of 26, at different Stiffness Index Z-score and the presence of no
clinical risk factors (left side); or 4 clinical risk factors (i.e., prior history of fragility fracture, prior history of fall, diabetes mel-
litus and missed chair test) (right side). The shadowed squares mean the presence of this specific CRF.
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WHO diagnostic classification cannot be applied to T-
scores obtained from QCT, pQCT, QUS, and pDXA
(other than one-third (33%) radius) measurements
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Fig. 5. Example of hip fracture probabilities corresponding
to low (dashed lines) and high (black) risk thresholds by age,
for women with a BMI of 26, using a 10-yr hip fracture prob-
ability model, based upon QUS and CRFs, in the case where
no CRFs have been identified.
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B A general statement that a medical evaluation for sec-
ondary causes of low BMD may be appropriate

B Recommendations for follow-up imaging
Grade: Fair-C-W-Necessary

� For QUS, the report may include the following optional
item:
B Recommendations for follow-up imaging Recommen-

dations for pharmacological and non pharmacological
interventions.

Grade: Fair-C-W

Rationale
An appropriate QUS report should include information

that identifies the patient, conveys the validity of the study,
and provides clear exam interpretation and recommendations
where appropriate. In addition, clear rationale of what should
be included into a DXA report has been nicely described in
a previous ISCD Position PDC publication (184). Since
a QUS device is a bone measurement tool that may be used
in the management of osteoporosis, reporting should be as
consistent as possible with DXA reporting. However, some
reporting information must be adapted to the QUS technolo-
gies (e.g. limitation of the WHO classification).

Discussion

Information required for DXA examinations is relatively
similar to that needed for QUS examinations, with some ex-
ceptions. The two exceptions found between the DXA and
QUS reporting are related to:

Factors affecting Study Quality (see also the QA/QC
section)

Factors influencing QUS measurements are usually differ-
ent than those influencing DXA. For example, while
Volume 11, 2008
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temperature can greatly impact SOS measurement, it does not
affect BMD. Another example is the presence of edema at the
heel, which also would negatively influence the QUS mea-
surement but not DXA of the hip or spine.

Interpretation/limitations (see current PDC
questions)

While the interpretation of DXA measurement is very
much established, it is not obvious yet for QUS measure-
ments. It is in the area of interpretation that both the greatest
controversy and the greatest opportunity for explaining the re-
sults of bone testing exist. For example, the WHO diagnostic
classification cannot be applied to T-scores obtained from
QUS measurements. However, alternative interpretation
would need to be discussed as highlighted at the 2007 PDC.

Additional Questions for Future Research

� How can QUS parameters and CRFs be quantitatively
combined in a report?
� Can intervention thresholds be identified and reported us-

ing QUS?

What are the Quality Assurance and Quality
Control (QA/QC) Criteria for QUS?

ISCD Official Positions

� For QUS, device-specific education and training should
be given to the operators and interpreters prior to clinical
use.

Grade: Good-A-W-Necessary
� Quality control procedures should be performed regularly.

Grade: Good-A-W-Necessary

Rationale
As a quantitative measurement, bone densitometry, includ-

ing X-ray and QUS approaches, differs from many radio-
graphic procedures where interpretation is mainly based on
the expert evaluation of a trained radiologist. Therefore, strict
attention to the performance of these devices is required. In-
accuracy or imprecision in individual measurements can lead
to incorrect diagnosis. This becomes even more important in
the evaluation of longitudinal measurements. For these rea-
sons, a thoughtfully designed and carefully implemented
scanner quality assurance (QA)/quality control (QC) program
is required in all clinical and research installations. Quality
assurance in medical applications involves methods of perfor-
mance evaluation of equipment and the operator, to improve
reliability of the results. Quality control, on the other hand,
is an aggregate of sampling and testing procedures based on
statistical theory and analysis, and is designed to ensure ade-
quate quality of the finished product. In medical applications
these two terms are often used interchangeably (185).

Requirements for good quality measurements are different
with respect to whether one wants to obtain a good trueness or
a good precision (accuracy 5 trueness þ precision). The true-
ness of a method (i.e., agreement of measured and true data)
Journal of Clinical Densitometry: Assessment of Skeletal Health
determines its ability to discriminate between healthy and os-
teoporotic subjects, or to assess fracture risk. A poor precision
will limit diagnostic sensitivity by adding noise to the mea-
surement result. More importantly, precision affects the abil-
ity of a method to monitor normal and pathological changes
and to measure the response to therapy (186,187). For moni-
toring purposes, it is essential to have excellent precision to
determine response of a variable to disease or therapy. For di-
agnostic purposes, precision errors should be well below one
T-score to minimize misclassification errors (188e191).

Discussion

There are many sources of error for bone measurement in
vivo, including surrounding soft tissue and foot positioning.
Inter-subject variability and precision are influenced by soft
tissue thickness, temperature and composition, and the quality
of the sound transmission from the coupling medium into the
skin. Additional errors may be introduced by the properties of
the coupling medium between transducers and the skin itself
(waterbath or sound transmitting pads) (192e197). In the first
part of this section, single error sources are described and in-
terpreted with regard to their impact on measurement quality.
Measures for assurance of good quality will be suggested in
the second part.

Sources of Error

Positioning. As with other methods, anatomically consistent
regions of the bone must be measured with QUS in order to
obtain sufficient accuracy, while precision is affected by the
quality of sequential repositioning for each patient (e.g.
heel not parallel to the transducer, or not correctly adjusted
to the foot positioner) (193,197e199). There are different
procedures for positioning that are implemented based on
anatomical landmarks and/or acoustical criteria. Some de-
vices are able to generate an image of the skeletal site (heel
only). The use of an imaging system may help to overcome
positioning errors by placing a ROI on the image (200). In
general, no advantage of imaging with respect to precision
and the power of risk prediction, has been proven (OPUS,
in-house data). However, for the individual subject, a measure-
ment failure due to incorrect positioning is of great importance.
Creation of an image enables control and documentation of the
correct positioning by the operator. This is of particular impor-
tance for an interpreter to evaluate the validity of the test.

Soft Tissue Properties. The temperature of the skin and the
subcutaneous tissue is variable and can influence QUS results
(201). Soft tissue temperature of the limbs can be substan-
tially lower than regular body temperature, particularly in
winter time. In the axial transmission method for radius, pha-
langes, or tibia measures are implemented to correct for the
impact of soft tissue. In the cortical transverse transmission
method for phalanges, temperature has little or no affect on
measurements due to a large difference between SOS in the
compact bone and soft tissue. This is different with heel
Volume 11, 2008
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 Table 6
Studies on QUS and Treatment for Prevention and Therapy of Osteoporosis

Study Study design Device Study design Yr Parame

Naessen et al. (166) CS Achilles PM women (67� 1.2 yr) e BUA
28 HRT SOS

28 nothing Stiffne

Gonnelli et al. (169) L Achilles PMO women (50e64 yr) 2 BUA
78 CTþCa SOS

32 Ca Stiffne

Krieg et al. (171) L Achilles PM women (62e98 yr) 2 SOS
124 CaVitD BUA
124 nothing

Sahota et al. (172) L Achilles þ PM women (52.1� yr) 4 BUA
30 HRT SOS

30 nothing Stiffne

Hadji et al. (173) CS Achilles þ PM women (52.2� 8 yr) e BUA
611 HRT SOS

1395 nothing Stiffne

Gonnelli et al. (168) L Achilles þ PMO women (55e65 yr) 4 BUA
74 ALþ Ca SOS

76 Ca Stiffne

Gonnelli (167) L Achilles þ OP men (48e68 yrs) 3 BUA
39 AL þCa SOS

38 Ca Stiffne

Balikian et al. (174) L UBA 575þ PM women (50e56 yr) 2 BUA
31 HRT

32 nothing

Frost et al. (175) L Sahara PM women (45e59 yr) 2 BUA
39 HRT-Bs SOS

25 HRT-Bs-2y 131
nothing

Moschonis and Manios(176) L Sahara PM women (55e65 yr) 1 SOS
42 Dairy (CaþVitD) BUA

40 nothing QUI

De Aloysio et al. (177) L DBM sonic 1200 PM women (52þ 2.5 yr) 1 UBPS
49 HRT ADSo

32 nothing
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18 m/s �38 m/s *
30 m/s �13 m/s *
0.12 ms �0.04 ms *

þ2.46% vs baseline ***

�0.87% �2.10% n.s.
7.0% 1.04% **

1.37% 0.46% **

0.12 ms 0.01 ms n.s
51 m/s 4 m/s **

�1.9% 0.2% n.s
0.2% 0.1% n.s
�0.1% �1.1% n.s.
0.6% 1.1% n.s
�14% 1.5% ***
17% 2.5% ***

2.19% �4.48% **

x Dd5.5% vs baseline n.s.
s Dd23.4% vs baseline *

x D 0.15 Z-sc vs controls n.s
s D 0.44 Z-sc vs controls **
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Mauloni et al. (178) L DBM Sonic 1200 PM women (51.1� 3.2 yr) 4 AD-SoS
45 HRT pSOS

67 nothing BTT

Zitzmann et al. (179) L DBM sonic 1200 Hypogonadal men 1 ADSoS
(37.8� 14.3 yr)
54 T substituted

Ingle (183) L DBM sonic BP PMO women (63 yr) 1 AD-SoS
18 AL 10 mg BTT

8 Ca pSoS

Ingle et al. (183) L DBM sonic PMO women (68 yr) 1 BTT
10 ERT pSoS

11 nothing

Gonnelli et al. (170) L Achilles þ DBM BP PMO women (62e76 yr) 1 BUA
30 TPDþCa SOS

30 anti-resoprtive Stiffness
AD-SoS

BTT
FWA

Seriolo et al. (180) L DBM sonic 1200 PMO women with RA (45e55 yr) 1 AD-SoS
20 antiTNFaþMTXþ P

14 controls: MTXþ P

Drake et al. (181) L Omnisense PMO women (70.2 yr) 1 SOS Phalan
81AL 80 or 160 mg SOS Radiu

Knapp et al. (182) CS Omnisense PM women (58 yr) e SOS Phalan
194 nothing SOS Radiu

126 HRT

Abbr: PM, Postmenopausal; PMO, Postmenopausal Osteoporosis; AL, Alendronate; Ca, Calcium; Vit D, Vitamin D; TPD, Teriparati
HRT, Hormone Replacement Therapy; SCT, Salmon Calcitonin; RA, Rheumatoid Arthritis.

* p ! 0.05; ** p ! 0.01; *** p ! 0.001.
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measurements, because SOS in trabecular bone and in soft tis-
sue is similar. The impact of soft tissue temperature can be
estimated using results from some studies in which skin tem-
perature has been measured. A decrease of 3.6 m/s in SOS per
one degree Celsius (C) increase in skin temperature has been
observed (197). In accordance with this result, a mean differ-
ence of 4 �C in skin temperature between winter and summer
resulted in a mean difference of 15 m/s in SOS (202), which
corresponds to 0.5 T-score. The difference in stiffness was
lower (0.25 T-score), and the difference in BUA was not sig-
nificant. However, variations in individual skin temperatures
can be even larger, by as much as 12�C (197).

Precision can also be affected by variations in soft tissue
thickness, which might be caused by gaining or losing weight,
changes in diet (i.e. acute salt intake), or developing ankle
edema (203,204). For a dry system, a 6 mm decrease of
heel thickness (caused by pressure to disperse edema) caused
an increase of 24 m/s in SOS (205). This effect can be ex-
plained by an increase of the bone to soft tissue ratio along
the ultrasound path through the heel. For water-based sys-
tems, a much smaller effect can be anticipated because the
acoustical parameters of edema and water are quite similar
(197,203,205).

Impact of the Coupling Medium. Unlike X-ray based technol-
ogies, achievement of good quality coupling of the ultrasonic
beam into the body is essential. A coupling gel or liquid must
be used in all methods to assure proper penetration through
the skin. Devices with constant transducer separation use an ad-
ditional coupling medium, usually water. Air bubbles in thewater
and variations in water temperature are possible error sources,
which can be avoided by adding surfactants and using temper-
ature control. In dry systems, errors may be caused by the tem-
perature-dependence and aging of coupling pads (185,197).

Recommendations for the Assessment of Good
Measurement Quality

Use of QC Phantoms. One of the most important components
of the QA program is the test object, which may be either a stan-
dard or a phantom (185). A standard is an object of known
acoustic properties, which does not attempt to resemble the
anatomy of interest. It is usually a simple geometric form and
can be used to test one or more specific aspects of the scanner
performance. On the other hand, a phantom attempts to emulate
the in vivo measurement as much as possible in terms of geom-
etry and acoustic properties. Although the later is the more rel-
evant, its manufacture is complex and expensive because the
mode of ultrasound interaction with the medium is still unclear.
Presently, there are no universally accepted QUS phantoms, but
only ‘‘manufacturer-specific’’ phantoms, which are not anthro-
pomorphic. Daily measurements of these phantoms are the pri-
mary method of detecting changes in the equipment that may
result from component aging or outright failure (including elec-
tronics, mechanics, and the coupling path). As a result, in the
case of longitudinal studies, one should be able to correct for
an unstable device based on the drift or shift of the phantom
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measurements, by applying a correction factor to the patient
data (195). This procedure would guarantee that the device’s re-
sults reflect the ‘‘biological or therapeutic’’ reality and not a de-
vice malfunction. It is generally accepted that long-term
stability and precision errors of measurements on these phan-
toms should not exceed a quarter of a T-score, in order to limit
misclassification errors to a clinically acceptable level (9).

Daily changes in QC parameters (e.g. SOS or BUA) may
not reflect what happens in vivo because the reliability of
these manufacturer-specific phantoms is influenced by exter-
nal factors (e.g. air and water temperature, quality of the
water, etc). Indeed, since they are usually stored at room
temperature, the phantom, the room, or the water-bath could
possess different temperatures from 1 d to another. In addi-
tion, the elasticity of the phantom material may change
over time. As a consequence, it becomes very difficult to dif-
ferentiate the effect of temperature from the actual instability
of the system or the aging of the phantom. Therefore, more
advanced QC procedures have been developed using, for
example, a combination of external phantom and internal
indicators based on the water measurements (195). This ap-
proach enables a gain of confidence in the clinical outcome
as well as in the manner one would have to correct the data
in case of malfunction. As another alternative to the external
phantoms, P. Laugier et al. suggested using internal digital
phantoms, while Langton et al. suggested an external elec-
tronic phantom, designed to test scanner performance for
BUA measurement (206,207). Such phantoms are very stable,
since they do not require any extra manipulation during the
measurement and are not influenced by external factors.
The digital BUA phantom concept has already been incorpo-
rated into one QUS device (UBIS 5000, DMS, France) and
preliminary studies suggest encouraging results (208).

Since differences between the devices of the same manu-
facturer have been observed (13,209), specific cross-calibra-
tion procedures should also be implemented including
exchange of QC phantoms. Cross-calibration between devices
using different QUS-approaches is not feasible, because dif-
ferent skeletal sites may be measured with different technol-
ogies. Even with devices measuring the heel, methodologies
differ (water-based/dry, calculation of variables) and it still
must be evaluated if a cross-calibration is possible with suffi-
cient accuracy. For this purpose several non-ultrasound device
manufacturers developed external anthropometric ‘‘ultra-
sound specific’’ phantoms that are still under evaluation
(Leeds QUS phantoms, CIRS QUS phantoms and the Van-
couver Phantoms), with promising results (185). Ideally, daily
QC and initial cross-calibration between devices should be
performed using a temperature-controlled anthropometric
phantom mimicking trabecular structure.

QA/QC in Clinical Practice. Monitoring the performance
and stability of the devices by regular quality control mea-
surements using appropriate phantoms is a precondition for
the assessment of good measurement quality. Also, QUS-
specific training should be performed to raise the operator’s
awareness to the specific requirements of QUS measurements.
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Indeed for most devices the operator has no influence over the
study exam result after the signal has been recorded (i.e., no
scan analysis).

Manufacturers may provide training of operators at the
time of device delivery. This is typically a brief introduction
to the software and patient handling. In addition to this,
more extensive training is recommended. Training should in-
clude positioning and assurance of proper contact between
the skin and the coupling medium. While proper positioning
can be controlled using an image, a bad measurement qual-
ity through improper coupling can hardly be detected by the
device and careful handling by the operator is necessary. An
easy-to-implement method to evaluate for outliers is the per-
formance of double measurements. This is not difficult,
since QUS measurements are rapid and do not involve X-
ray exposure. If differences between results of the two mea-
surements remain within specific limits, reliability of the
measurement is high. The limit could be three times the pre-
cision error of the variable: 95% of valid measurements
should fall into this category. When this limit is exceeded,
a third measurement should be performed to exclude outliers
(17,92).

Specific procedures can be recommended for known error
sources, such as temperature and soft tissue thickness. Pa-
tients with severe edema should be excluded from heel mea-
surements. In patients with low foot temperature SOS results
will be falsely lower. This is not a problem when results are
high. If numbers are in a range where consequences could re-
sult from the measurement, the foot should be warmed and
measurement repeated.

An indirect way to evaluate technologist performance is by
periodic assessment of reproducibility. This can be achieved
by determining the coefficient of variation (CV) of the mea-
surements. From time to time, a group of patients can be
asked to undergo multiple measurements. By measuring
a group of 15e30 subjects three or two times in a single visit,
the measurement variability can be determined and precision
evaluated. Whenever precision falls outside acceptable limits
(still need to be defined for a given device and parameters) the
technologist should have refresher training and proper tech-
nique should be reviewed. It is also necessary to determine
if sufficient time is being allocated for each measurement. Of-
ten poor precision results from having too little time to pre-
pare the patient or repeat measurements when an error is
detected. The in vivo CVs generally quoted in the literature
range from 0.8e5% and 0.2e1% for BUA and SOS, respec-
tively (see Table 1). It is always recommended that precision
assessment be performed by the QUS center’s technologist
and not rely on the precision values reported in the literature
or by the manufacturer. Once the precision of the measure-
ment is known, it is possible to determine the minimal detect-
able difference between two measurements that is statistically
significant (w least significant change). This information is
useful in interpreting longitudinal measurements and assess-
ing change. Since QUS is not recommended for monitoring
a patient, the necessity of precision assessment in clinical
practice is uncertain.
Journal of Clinical Densitometry: Assessment of Skeletal Health
Additional Questions for Future Research

� What is an appropriate anthromorphic phantom for QC
procedures that is acceptable for QUS devices on the mar-
ket?
� What would be the impact in clinical practice of clearly

defining QC procedures for all QUS devices?
� Should there be a standardized approach for the correc-

tion of measurement results using the patient’s foot tem-
perature?
� What are the acceptable limits for in vivo precision for

a given device and parameters?

Summary

Heel QUS is inexpensive, transportable, ionizing radiation-
free, and, like central DXA, proven to predict hip fractures
and all osteoporotic fractures in elderly women. Unfortu-
nately, the proliferation of bone ultrasound devices using dif-
ferent technologies for measuring different skeletal sites,
together with the absence of technology-specific guidelines,
has created great uncertainty in applying the results to the
clinical management of individual patients. For the first
time, The ISCD Official Positions, outlined in this document,
describe the practical role of QUS in the management of os-
teoporosis based on the current state of scientific knowledge.
The use and utility of QUS to identify subjects at low or high
risk of osteoporotic fracture is justified particularly in situa-
tions where central DXA is unavailable. Heel QUS measures
are related to global fracture risk with similar relative risk as
other central bone density ROI for postmenopausal women
and for men. Their use, in conjunction with CRF, allows for
the identification of subjects who have either a sufficiently
high probability of osteoporotic fracture and should initiate
treatment, or a sufficiently low probability of osteoporotic
fracture and therefore require no further medical investiga-
tion. Currently, however, QUS have not been shown to be ef-
fective in monitoring treatment efficacy. Further attention on
quality control procedures as well as standardization, espe-
cially of ROI, could improve the utility and acceptance of
these devices.
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